Subcontests
(6)p-norms on integer lattice
For postive integer n consider the hyperplane R0n=x=(x1x2...xn)∈Rn:i=1∑nxi=0 and the lattice Z0n={y∈R0n: (∀i:yi∈N)}
Define the quasi-norm in Rn by ∥x∥p=pi=1∑n∣xi∣p if 0<p<∞ and ∥x∥∞=imax∣xi∣.
(a) If x∈R0n so that maxxi−minxi≤1 then prove that ∀p∈[1,∞],∀y∈Z0n we have ∥x∥p≤∥x+y∥p
(b) Prove that for every p∈]0,1[, there exist n∈N,x∈R0n,y∈Z0n with maxxi−minxi≤1 and ∥x∥p>∥x+y∥p