MathDB
space mapping

Source: IMC 1997 day 2 problem 4

October 22, 2005
linear algebralinear algebra unsolved

Problem Statement

(a) Let f:Rn×nRf: \mathbb{R}^{n\times n}\rightarrow\mathbb{R} be a linear mapping. Prove that !CRn×n\exists ! C\in\mathbb{R}^{n\times n} such that f(A)=Tr(AC),ARn×nf(A)=Tr(AC), \forall A \in \mathbb{R}^{n\times n}. (b) Suppose in addtion that A,BRn×n:f(AB)=f(BA)\forall A,B \in \mathbb{R}^{n\times n}: f(AB)=f(BA). Prove that λR:f(A)=λTr(A)\exists \lambda \in \mathbb{R}: f(A)=\lambda Tr(A)