MathDB
Problems
Contests
Undergraduate contests
IMC
2002 IMC
6
6
Part of
2002 IMC
Problems
(1)
IMC 2002 Problem 6
Source: IMC 2002
3/7/2021
For an
n
×
n
n\times n
n
×
n
matrix with real entries let
∣
∣
M
∣
∣
=
sup
x
∈
R
n
∖
{
0
}
∣
∣
M
x
∣
∣
2
∣
∣
x
∣
∣
2
||M||=\sup_{x\in \mathbb{R}^{n}\setminus\{0\}}\frac{||Mx||_{2}}{||x||_{2}}
∣∣
M
∣∣
=
sup
x
∈
R
n
∖
{
0
}
∣∣
x
∣
∣
2
∣∣
M
x
∣
∣
2
, where
∣
∣
⋅
∣
∣
2
||\cdot||_{2}
∣∣
⋅
∣
∣
2
denotes the Euclidean norm on
R
n
\mathbb{R}^{n}
R
n
. Assume that an
n
×
n
n\times n
n
×
n
matrxi
A
A
A
with real entries satisfies
∣
∣
A
k
−
A
k
−
1
∣
∣
≤
1
2002
k
||A^{k}-A^{k-1}||\leq\frac{1}{2002k}
∣∣
A
k
−
A
k
−
1
∣∣
≤
2002
k
1
for all positive integers
k
k
k
. Prove that
∣
∣
A
k
∣
∣
≤
2002
||A^{k}||\leq 2002
∣∣
A
k
∣∣
≤
2002
for all positive integers
k
k
k
.
linear algebra
matrix