For an n×n matrix with real entries let ∣∣M∣∣=supx∈Rn∖{0}∣∣x∣∣2∣∣Mx∣∣2, where
∣∣⋅∣∣2 denotes the Euclidean norm on Rn. Assume that an n×n matrxi A with real entries satisfies ∣∣Ak−Ak−1∣∣≤2002k1 for all positive integers k. Prove that ∣∣Ak∣∣≤2002 for all positive integers k.