Let f be an entire function on C and ω1,ω2 are complex numbers such that ω2ω1∈C\Q. Prove that if for each z∈C, f(z) \equal{} f(z \plus{} \omega_1) \equal{} f(z \plus{} \omega_2) then f is constant. functiongeometryparallelogramvectorcomplex analysiscomplex numberscomplex analysis unsolved