MathDB
Entire function

Source: IMS 2008

May 10, 2008
functiongeometryparallelogramvectorcomplex analysiscomplex numberscomplex analysis unsolved

Problem Statement

Let f f be an entire function on C \mathbb C and ω1,ω2 \omega_1,\omega_2 are complex numbers such that ω1ω2C\Q \frac {\omega_1}{\omega_2}\in{\mathbb C}\backslash{\mathbb Q}. Prove that if for each zC z\in \mathbb C, f(z) \equal{} f(z \plus{} \omega_1) \equal{} f(z \plus{} \omega_2) then f f is constant.