MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2000 Miklós Schweitzer
5
5
Part of
2000 Miklós Schweitzer
Problems
(1)
Miklós Schweitzer 2000, Problem 5
Source: Miklós Schweitzer 2000
7/30/2016
Prove that for every
ε
>
0
\varepsilon >0
ε
>
0
there exists a positive integer
n
n
n
and there are positive numbers
a
1
,
…
,
a
n
a_1, \ldots, a_n
a
1
,
…
,
a
n
such that for every
ε
<
x
<
2
π
−
ε
\varepsilon < x < 2\pi - \varepsilon
ε
<
x
<
2
π
−
ε
we have
∑
k
=
1
n
a
k
cos
k
x
<
−
1
ε
∣
∑
k
=
1
n
a
k
sin
k
x
∣
\sum_{k=1}^n a_k\cos kx < -\frac{1}{\varepsilon}\left| \sum_{k=1}^n a_k\sin kx\right|
k
=
1
∑
n
a
k
cos
k
x
<
−
ε
1
k
=
1
∑
n
a
k
sin
k
x
.
college contests
Miklos Schweitzer
real analysis