MathDB
Miklós Schweitzer 2000, Problem 5

Source: Miklós Schweitzer 2000

July 30, 2016
college contestsMiklos Schweitzerreal analysis

Problem Statement

Prove that for every ε>0\varepsilon >0 there exists a positive integer nn and there are positive numbers a1,,ana_1, \ldots, a_n such that for every ε<x<2πε\varepsilon < x < 2\pi - \varepsilon we have k=1nakcoskx<1εk=1naksinkx\sum_{k=1}^n a_k\cos kx < -\frac{1}{\varepsilon}\left| \sum_{k=1}^n a_k\sin kx\right|.