Let α≤−2 be an integer. Prove that for every pair (β0,β1) of integers there exists a uniquely determined sequence 0≤q0,…,qk<α2−α of integers, such that qk=0 if (β0,β1)=(0,0) and
βi=j=0∑kqj(α−i)j, for i=0,1 Miklos SchweitzerSequencesreal analysis