MathDB
Miklós Schweitzer 2001 Problem 2

Source:

February 12, 2017
Miklos SchweitzerSequencesreal analysis

Problem Statement

Let α2\alpha \leq -2 be an integer. Prove that for every pair (β0,β1)(\beta_0, \beta_1) of integers there exists a uniquely determined sequence 0q0,,qk<α2α0\leq q_0, \ldots, q_k<\alpha ^ 2 - \alpha of integers, such that qk0q_k\neq 0 if (β0,β1)(0,0)(\beta_0, \beta 1)\neq (0,0) and βi=j=0kqj(αi)j, for i=0,1\beta_i=\sum_{j=0}^k q_j(\alpha - i)^j,\text{ for }i=0,1