MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2001 Miklós Schweitzer
2
Miklós Schweitzer 2001 Problem 2
Miklós Schweitzer 2001 Problem 2
Source:
February 12, 2017
Miklos Schweitzer
Sequences
real analysis
Problem Statement
Let
α
≤
−
2
\alpha \leq -2
α
≤
−
2
be an integer. Prove that for every pair
(
β
0
,
β
1
)
(\beta_0, \beta_1)
(
β
0
,
β
1
)
of integers there exists a uniquely determined sequence
0
≤
q
0
,
…
,
q
k
<
α
2
−
α
0\leq q_0, \ldots, q_k<\alpha ^ 2 - \alpha
0
≤
q
0
,
…
,
q
k
<
α
2
−
α
of integers, such that
q
k
≠
0
q_k\neq 0
q
k
=
0
if
(
β
0
,
β
1
)
≠
(
0
,
0
)
(\beta_0, \beta 1)\neq (0,0)
(
β
0
,
β
1
)
=
(
0
,
0
)
and
β
i
=
∑
j
=
0
k
q
j
(
α
−
i
)
j
,
for
i
=
0
,
1
\beta_i=\sum_{j=0}^k q_j(\alpha - i)^j,\text{ for }i=0,1
β
i
=
j
=
0
∑
k
q
j
(
α
−
i
)
j
,
for
i
=
0
,
1
Back to Problems
View on AoPS