MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2005 Miklós Schweitzer
7
7
Part of
2005 Miklós Schweitzer
Problems
(1)
symmetric, biadditive function
Source: miklos schweitzer 2005 q7
8/31/2021
Let
t
∈
R
t\in R
t
∈
R
. Prove that
∃
A
:
R
×
R
→
R
\exists A:R \times R \to R
∃
A
:
R
×
R
→
R
such that A is a symmetric, biadditive, nonzero function and
A
(
t
x
,
x
)
=
0
∀
x
∈
R
A(tx,x)=0 \,\forall x\in R
A
(
t
x
,
x
)
=
0
∀
x
∈
R
iff t is transcendental or (t is algebraic and t,-t are conjugates over
Q
\mathbb{Q}
Q
).
algebra
Symmetric
algebraic number