MathDB
symmetric, biadditive function

Source: miklos schweitzer 2005 q7

August 31, 2021
algebraSymmetricalgebraic number

Problem Statement

Let tRt\in R. Prove that A:R×RR\exists A:R \times R \to R such that A is a symmetric, biadditive, nonzero function and A(tx,x)=0xRA(tx,x)=0 \,\forall x\in R iff t is transcendental or (t is algebraic and t,-t are conjugates over Q\mathbb{Q}).