For problem 11 , i couldn’t find the correct translation , so i just posted the hungarian version . If anyone could translate it ,i would be very thankful .
[tip=see hungarian]Az X ́esY valo ́s ́ert ́eku ̋ v ́eletlen v ́altoz ́ok maxim ́alkorrel ́acio ́ja az f(X) ́es g(Y) v ́altoz ́ok korrela ́cio ́j ́anak szupr ́emuma az olyan f ́es g Borel m ́erheto ̋, R→R fu ̈ggv ́enyeken, amelyekre f(X) ́es g(Y) v ́eges sz ́ora ́su ́. Legyen U a [0,2π] interval- lumon egyenletes eloszl ́asu ́ val ́osz ́ınu ̋s ́egi v ́altozo ́, valamint n ́es m pozit ́ıv eg ́eszek. Sz ́am ́ıtsuk ki sin(nU) ́es sin(mU) maxim ́alkorrela ́ci ́oja ́t.
Edit:
[hide=Translation thanks to @tintarn] The maximal correlation of two random variables X and Y is defined to be the supremum of the correlations of f(X) and g(Y) where f,g:R→R are measurable functions such that f(X) and g(Y) is (almost surely?) finite.
Let U be the uniformly distributed random variable on [0,2π] and let m,n be positive integers. Compute the maximal correlation of sin(nU) and sin(mU).
(Remark: It seems that to make sense we should require that E[f(X)] and E[g(Y)] as well as E[f(X)2] and E[g(Y)2] are finite.
In fact, we may then w.l.o.g. assume that E[f(X)]=E[g(Y)]=0 and E[f(Y)2]=E[g(Y)2]=1.) college contestsrandom variableMeasure theoryMiklos Schweitzerprobability and stats