MathDB

Problems(1)

Problem 11 Miklos Schweitzer

Source: Miklós Schweitzer 2010 , P11

9/9/2020
For problem 11 , i couldn’t find the correct translation , so i just posted the hungarian version . If anyone could translate it ,i would be very thankful . [tip=see hungarian]Az XX ́esY Y valo ́s ́ert ́eku ̋ v ́eletlen v ́altoz ́ok maxim ́alkorrel ́acio ́ja az f(X)f(X) ́es g(Y)g(Y ) v ́altoz ́ok korrela ́cio ́j ́anak szupr ́emuma az olyan ff ́es gg Borel m ́erheto ̋, RR\mathbb{R} \to \mathbb{R} fu ̈ggv ́enyeken, amelyekre f(X)f(X) ́es g(Y)g(Y) v ́eges sz ́ora ́su ́. Legyen U a [0,2π][0,2\pi] interval- lumon egyenletes eloszl ́asu ́ val ́osz ́ınu ̋s ́egi v ́altozo ́, valamint n ́es m pozit ́ıv eg ́eszek. Sz ́am ́ıtsuk ki sin(nU)\sin(nU) ́es sin(mU)\sin(mU) maxim ́alkorrela ́ci ́oja ́t. Edit: [hide=Translation thanks to @tintarn] The maximal correlation of two random variables XX and YY is defined to be the supremum of the correlations of f(X)f(X) and g(Y)g(Y) where f,g:RRf,g:\mathbb{R} \to \mathbb{R} are measurable functions such that f(X)f(X) and g(Y)g(Y) is (almost surely?) finite. Let UU be the uniformly distributed random variable on [0,2π][0,2\pi] and let m,nm,n be positive integers. Compute the maximal correlation of sin(nU)\sin(nU) and sin(mU)\sin(mU). (Remark: It seems that to make sense we should require that E[f(X)]E[f(X)] and E[g(Y)]E[g(Y)] as well as E[f(X)2]E[f(X)^2] and E[g(Y)2]E[g(Y)^2] are finite. In fact, we may then w.l.o.g. assume that E[f(X)]=E[g(Y)]=0E[f(X)]=E[g(Y)]=0 and E[f(Y)2]=E[g(Y)2]=1E[f(Y)^2]=E[g(Y)^2]=1.)
college contestsrandom variableMeasure theoryMiklos Schweitzerprobability and stats