Problem 11 Miklos Schweitzer
Source: Miklós Schweitzer 2010 , P11
September 9, 2020
college contestsrandom variableMeasure theoryMiklos Schweitzerprobability and stats
Problem Statement
For problem 11 , i couldn’t find the correct translation , so i just posted the hungarian version . If anyone could translate it ,i would be very thankful .
[tip=see hungarian]Az ́es valo ́s ́ert ́eku ̋ v ́eletlen v ́altoz ́ok maxim ́alkorrel ́acio ́ja az ́es v ́altoz ́ok korrela ́cio ́j ́anak szupr ́emuma az olyan ́es Borel m ́erheto ̋, fu ̈ggv ́enyeken, amelyekre ́es v ́eges sz ́ora ́su ́. Legyen U a interval- lumon egyenletes eloszl ́asu ́ val ́osz ́ınu ̋s ́egi v ́altozo ́, valamint n ́es m pozit ́ıv eg ́eszek. Sz ́am ́ıtsuk ki ́es maxim ́alkorrela ́ci ́oja ́t.
Edit:
[hide=Translation thanks to @tintarn] The maximal correlation of two random variables and is defined to be the supremum of the correlations of and where are measurable functions such that and is (almost surely?) finite.
Let be the uniformly distributed random variable on and let be positive integers. Compute the maximal correlation of and .
(Remark: It seems that to make sense we should require that and as well as and are finite.
In fact, we may then w.l.o.g. assume that and .)