MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2021 Miklós Schweitzer
4
4
Part of
2021 Miklós Schweitzer
Problems
(1)
represent mean of AM and GM as weighted sum
Source: 2021 Miklos Schweitzer, P4
11/2/2021
Let
I
I
I
be a nonempty open subinterval of the set of positive real numbers. For which even
n
∈
N
n \in \mathbb{N}
n
∈
N
are there injective function
f
:
I
→
R
f: I \to \mathbb{R}
f
:
I
→
R
and positive function
p
:
I
→
R
p: I \to \mathbb{R}
p
:
I
→
R
, such that for all
x
1
,
…
,
x
n
∈
I
x_1 , \ldots , x_n \in I
x
1
,
…
,
x
n
∈
I
,
f
(
1
2
(
x
1
+
⋯
+
x
n
n
+
x
1
⋯
x
n
n
)
)
=
p
(
x
1
)
f
(
x
1
)
+
⋯
+
p
(
x
n
)
f
(
x
n
)
p
(
x
1
)
+
⋯
+
p
(
x
n
)
f \left( \frac{1}{2} \left( \frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1 \cdots x_n} \right) \right)=\frac{p(x_1)f(x_1)+\cdots+p(x_n)f(x_n)}{p(x_1)+\cdots+p(x_n)}
f
(
2
1
(
n
x
1
+
⋯
+
x
n
+
n
x
1
⋯
x
n
)
)
=
p
(
x
1
)
+
⋯
+
p
(
x
n
)
p
(
x
1
)
f
(
x
1
)
+
⋯
+
p
(
x
n
)
f
(
x
n
)
holds?
real analysis