MathDB
represent mean of AM and GM as weighted sum

Source: 2021 Miklos Schweitzer, P4

November 2, 2021
real analysis

Problem Statement

Let II be a nonempty open subinterval of the set of positive real numbers. For which even nNn \in \mathbb{N} are there injective function f:IRf: I \to \mathbb{R} and positive function p:IRp: I \to \mathbb{R}, such that for all x1,,xnIx_1 , \ldots , x_n \in I, f(12(x1++xnn+x1xnn))=p(x1)f(x1)++p(xn)f(xn)p(x1)++p(xn) f \left( \frac{1}{2} \left( \frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1 \cdots x_n} \right) \right)=\frac{p(x_1)f(x_1)+\cdots+p(x_n)f(x_n)}{p(x_1)+\cdots+p(x_n)} holds?