MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2021 Miklós Schweitzer
7
7
Part of
2021 Miklós Schweitzer
Problems
(1)
On bounding the weighted sum over unit circle, binary XOR related
Source: 2021 Miklos Schweitzer, P7
11/2/2021
If the binary representations of the positive integers
k
k
k
and
n
n
n
are
k
=
∑
i
=
0
∞
k
i
2
i
k = \sum_{i=0}^{\infty} k_i 2^i
k
=
∑
i
=
0
∞
k
i
2
i
and
n
=
∑
i
=
0
∞
n
i
2
i
n = \sum_{i=0}^{\infty} n_i 2^i
n
=
∑
i
=
0
∞
n
i
2
i
, then the logical sum of these numbers is
k
⊕
n
=
∑
i
=
0
∞
∣
k
i
−
n
i
∣
2
i
.
k \oplus n =\sum_{i=0}^{\infty} |k_i-n_i|2^i.
k
⊕
n
=
i
=
0
∑
∞
∣
k
i
−
n
i
∣
2
i
.
Let
N
N
N
be an arbitrary positive integer and
(
c
k
)
k
∈
N
(c_k)_{k \in \mathbb{N}}
(
c
k
)
k
∈
N
be a sequence of complex numbers such that for all
k
∈
N
k \in \mathbb{N}
k
∈
N
,
∣
c
k
∣
≤
1
|c_k| \le 1
∣
c
k
∣
≤
1
. Prove that there exist positive constants
C
C
C
and
δ
\delta
δ
such that
∫
[
−
π
,
π
]
×
[
−
π
,
π
]
sup
n
<
N
,
n
∈
N
1
N
∣
∑
k
=
1
n
c
k
e
i
(
k
x
+
(
k
⊕
n
)
y
)
∣
d
(
x
,
y
)
≤
C
⋅
N
−
δ
\int_{[-\pi,\pi] \times [-\pi, \pi]} \sup_{n<N, n \in \mathbb{N}} \frac{1}{N} \Big| \sum_{k=1}^{n} c_k e^{i(kx+(k \oplus n) y)} \Big| \mathrm d(x,y) \le C \cdot N^{-\delta}
∫
[
−
π
,
π
]
×
[
−
π
,
π
]
n
<
N
,
n
∈
N
sup
N
1
k
=
1
∑
n
c
k
e
i
(
k
x
+
(
k
⊕
n
)
y
)
d
(
x
,
y
)
≤
C
⋅
N
−
δ
holds.
complex analysis
Binary