MathDB
On bounding the weighted sum over unit circle, binary XOR related

Source: 2021 Miklos Schweitzer, P7

November 2, 2021
complex analysisBinary

Problem Statement

If the binary representations of the positive integers kk and nn are k=i=0ki2ik = \sum_{i=0}^{\infty} k_i 2^i and n=i=0ni2in = \sum_{i=0}^{\infty} n_i 2^i, then the logical sum of these numbers is kn=i=0kini2i. k \oplus n =\sum_{i=0}^{\infty} |k_i-n_i|2^i. Let NN be an arbitrary positive integer and (ck)kN(c_k)_{k \in \mathbb{N}} be a sequence of complex numbers such that for all kNk \in \mathbb{N}, ck1 |c_k| \le 1. Prove that there exist positive constants CC and δ\delta such that [π,π]×[π,π]supn<N,nN1Nk=1nckei(kx+(kn)y)d(x,y)CNδ \int_{[-\pi,\pi] \times [-\pi, \pi]} \sup_{n<N, n \in \mathbb{N}} \frac{1}{N} \Big| \sum_{k=1}^{n} c_k e^{i(kx+(k \oplus n) y)} \Big| \mathrm d(x,y) \le C \cdot N^{-\delta} holds.