MathDB
Problems
Contests
Undergraduate contests
Putnam
1956 Putnam
B2
B2
Part of
1956 Putnam
Problems
(1)
Putnam 1956 B2
Source: Putnam 1956
7/5/2022
Suppose that each set
X
X
X
of points in the plane has an associated set
X
‾
\overline{X}
X
of points called its cover. Suppose further that (1)
X
∪
Y
‾
⊃
X
‾
‾
∪
Y
‾
∪
Y
\overline{X\cup Y} \supset \overline{\overline{X}} \cup \overline{Y} \cup Y
X
∪
Y
⊃
X
∪
Y
∪
Y
for all sets
X
,
Y
X,Y
X
,
Y
. Show that i)
X
‾
⊃
X
\overline{X} \supset X
X
⊃
X
, ii)
X
‾
‾
=
X
‾
\overline{\overline{X}}=\overline{X}
X
=
X
and iii)
X
⊃
Y
⇒
X
‾
⊃
Y
‾
.
X\supset Y \Rightarrow \overline{X} \supset \overline{Y}.
X
⊃
Y
⇒
X
⊃
Y
.
Prove also that these three statements imply (1).
Putnam
Plane
Subsets