MathDB
Problems
Contests
Undergraduate contests
Putnam
1970 Putnam
B5
B5
Part of
1970 Putnam
Problems
(1)
Putnam 1970 B5
Source: Putnam 1970
5/17/2022
Let
u
n
u_n
u
n
denote the ramp function
u
n
(
x
)
=
{
−
n
for
x
≤
−
n
,
x
for
−
n
≤
x
≤
n
,
n
for
n
≤
x
,
u_n (x) =\begin{cases} -n \;\; \text{for} \;\; x \leq -n, \\ \; x \;\;\; \text{for} \;\; -n \leq x \leq n,\\ \;n \;\; \; \text{for} \;\; n \leq x, \end{cases}
u
n
(
x
)
=
⎩
⎨
⎧
−
n
for
x
≤
−
n
,
x
for
−
n
≤
x
≤
n
,
n
for
n
≤
x
,
and let
f
f
f
be a real function of a real variable. Show that
f
f
f
is continuous if and only if
u
n
∘
f
u_n \circ f
u
n
∘
f
is continuous for all
n
.
n.
n
.
Putnam
function
continuity