MathDB
Putnam 1970 B5

Source: Putnam 1970

May 17, 2022
Putnamfunctioncontinuity

Problem Statement

Let unu_n denote the ramp function un(x)={n    for    xn,  x      for    nxn,  n      for    nx, u_n (x) =\begin{cases} -n \;\; \text{for} \;\; x \leq -n, \\ \; x \;\;\; \text{for} \;\; -n \leq x \leq n,\\ \;n \;\; \; \text{for} \;\; n \leq x, \end{cases} and let ff be a real function of a real variable. Show that ff is continuous if and only if unfu_n \circ f is continuous for all n.n.