MathDB
Problems
Contests
Undergraduate contests
Putnam
1985 Putnam
B6
B6
Part of
1985 Putnam
Problems
(1)
Putnam 1985 B6
Source:
8/5/2019
Let
G
G
G
be a finite set of real
n
×
n
n \times n
n
×
n
matrices
{
M
i
}
,
1
≤
i
≤
r
,
\left\{M_{i}\right\}, 1 \leq i \leq r,
{
M
i
}
,
1
≤
i
≤
r
,
which form a group under matrix multiplication. Suppose that
∑
i
=
1
r
tr
(
M
i
)
=
0
,
\textstyle\sum_{i=1}^{r} \operatorname{tr}\left(M_{i}\right)=0,
∑
i
=
1
r
tr
(
M
i
)
=
0
,
where
tr
(
A
)
\operatorname{tr}(A)
tr
(
A
)
denotes the trace of the matrix
A
.
A .
A
.
Prove that
∑
i
=
1
r
M
i
\textstyle\sum_{i=1}^{r} M_{i}
∑
i
=
1
r
M
i
is the
n
×
n
n \times n
n
×
n
zero matrix.
Putnam
linear algebra