MathDB
Putnam 1985 B6

Source:

August 5, 2019
Putnamlinear algebra

Problem Statement

Let GG be a finite set of real n×nn \times n matrices {Mi},1ir,\left\{M_{i}\right\}, 1 \leq i \leq r, which form a group under matrix multiplication. Suppose that i=1rtr(Mi)=0,\textstyle\sum_{i=1}^{r} \operatorname{tr}\left(M_{i}\right)=0, where tr(A)\operatorname{tr}(A) denotes the trace of the matrix A.A . Prove that i=1rMi\textstyle\sum_{i=1}^{r} M_{i} is the n×nn \times n zero matrix.