MathDB
Problems
Contests
Undergraduate contests
Vojtěch Jarník IMC
2001 VJIMC
Problem 3
Problem 3
Part of
2001 VJIMC
Problems
(2)
ln2*ln3*...ln n < sqrt(n!)/n
Source: VJIMC 2001 1.3
7/26/2021
Let
n
≥
2
n\ge2
n
≥
2
be a natural number. Prove that
∏
k
=
2
n
ln
k
<
n
!
n
.
\prod_{k=2}^n\ln k<\frac{\sqrt{n!}}n.
k
=
2
∏
n
ln
k
<
n
n
!
.
inequalities
lim xf(x)=0 if f:R+->R+ and int^∞_0<∞
Source: VJIMC 2001 2.3
7/21/2021
Let
f
:
(
0
,
+
∞
)
→
(
0
,
+
∞
)
f:(0,+\infty)\to(0,+\infty)
f
:
(
0
,
+
∞
)
→
(
0
,
+
∞
)
be a decreasing function which satisfies
∫
0
∞
f
(
x
)
d
x
<
+
∞
\int^\infty_0f(x)\text dx<+\infty
∫
0
∞
f
(
x
)
d
x
<
+
∞
. Prove that
lim
x
→
+
∞
x
f
(
x
)
=
0
\lim_{x\to+\infty}xf(x)=0
lim
x
→
+
∞
x
f
(
x
)
=
0
.
calculus
limits
integration
function