MathDB

3

Part of 2019 VJIMC

Problems(2)

VJIMC 2019 P3

Source: VJIMC 2019

3/29/2019
For an invertible n×nn\times n matrix MM with integer entries we define a sequence SM={Mi}i=0\mathcal{S}_M=\{M_i\}_{i=0}^{\infty} by the recurrence M0=MM_0=M ,Mi+1=(MiT)1MiM_{i+1}=(M_i^T)^{-1}M_i for i0i\geq 0.
Find the smallest integer n2n\geq 2 for wich there exists a normal n×nn\times n matrix with integer entries such that its sequence SM\mathcal{S}_M is not constant and has period P=7P=7 i.e Mi+7=MiM_{i+7}=M_i. (MTM^T means the transpose of a matrix MM . A square matrix is called normal if MTM=MMTM^T M=M M^T holds).
Proposed by Martin Niepel (Comenius University, Bratislava)..
linear algebramatrixVJIMC2019VJIMCVojtech JarnikAnnual Vojtech Jarnic
VJIMC 2019 P3 Category II

Source: VJIMC 2019

3/30/2019
Let pp be an even non-negative continous function with Rp(x)dx=1\int _{\mathbb{R}} p(x) dx =1 and let nn be a positive integer. Let ξ1,ξ2,ξ3,ξn\xi_1,\xi_2,\xi_3 \dots ,\xi_n be independent identically distributed random variables with density function pp . Define
\begin{align*} X_{0} & = 0 \\ X_{1} & = X_0+ \xi_1 \\ & \vdotswithin{ = }\notag \\ X_{n} & = X_{n-1} + \xi_n \end{align*}
Prove that the probability that all random variables X1,X2Xn1X_1,X_2 \dots X_{n-1} lie between X0X_0 and XnX_n is 1n\frac{1}{n}.
Proposed by Fedor Petrov (St.Petersburg State University).
real analysisVJIMC2019VJIMCVojtech JarnikAnnual Vojtech Jarnic