MathDB
VJIMC 2019 P3 Category II

Source: VJIMC 2019

March 30, 2019
real analysisVJIMC2019VJIMCVojtech JarnikAnnual Vojtech Jarnic

Problem Statement

Let pp be an even non-negative continous function with Rp(x)dx=1\int _{\mathbb{R}} p(x) dx =1 and let nn be a positive integer. Let ξ1,ξ2,ξ3,ξn\xi_1,\xi_2,\xi_3 \dots ,\xi_n be independent identically distributed random variables with density function pp . Define
\begin{align*} X_{0} & = 0 \\ X_{1} & = X_0+ \xi_1 \\ & \vdotswithin{ = }\notag \\ X_{n} & = X_{n-1} + \xi_n \end{align*}
Prove that the probability that all random variables X1,X2Xn1X_1,X_2 \dots X_{n-1} lie between X0X_0 and XnX_n is 1n\frac{1}{n}.
Proposed by Fedor Petrov (St.Petersburg State University).