MathDB
x divides p(x) if p(n+1)p(n+2)...p(n+k) / p(1)p(2)...p(k) is an integer

Source: 2019 Ukraine TST 2.2

November 17, 2020
algebrapolynomialdivisible

Problem Statement

Polynomial p(x)p(x) with real coefficients, which is different from the constant, has the following property: for any naturals nn and kk the p(n+1)p(n+2)...p(n+k)p(1)p(2)...p(k)\frac{p(n+1)p(n+2)...p(n+k)}{p(1)p(2)...p(k)} is an integer. Prove that this polynomial is divisible by xx.