MathDB
Putnam 1941 B6

Source: Putnam 1941

February 23, 2022
PutnamintegrationTriple integral

Problem Statement

Assuming that f(x)f(x) is continuous in the interval (0,1)(0,1), prove that x=0x=1y=xy=1z=xz=yf(x)f(y)f(z)  dzdydx=16(01f(t)  dt)3.\int_{x=0}^{x=1} \int_{y=x}^{y=1} \int_{z=x}^{z=y} f(x)f(y)f(z)\;dz dy dx= \frac{1}{6}\left(\int_{0}^{1} f(t)\; dt\right)^{3}.