MathDB

1941 Putnam

Part of Putnam

Subcontests

(14)

Putnam 1941 B7

Do either (1) or (2): (1) Show that any solution f(t)f(t) of the functional equation f(x+y)f(xy)=f(x)2+f(y)21f(x+y)f(x-y)=f(x)^{2} +f(y)^{2} -1 for x,yRx,y\in \mathbb{R} satisfies f(t)=±c2f(t)f''(t)= \pm c^{2} f(t) for a constant cc, assuming the existence and continuity of the second derivative. Deduce that f(t)f(t) is one of the functions ±cosct,      ±coshct. \pm \cos ct, \;\;\; \pm \cosh ct.
(2) Let (ai)i=1,...,n(a_{i})_{i=1,...,n} and (bi)i=1,...,n(b_{i})_{i=1,...,n} be real numbers. Define an (n+1)×(n+1)(n+1)\times (n+1)-matrix A=(cij)A=(c_{ij}) by ci1=1,    c1j=xj1  for  jn,    c1n+1=p(x),    cij=ai1j1  for  i>1,jn,    cin+1=bi1  for  i>1. c_{i1}=1, \; \; c_{1j}= x^{j-1} \; \text{for} \; j\leq n,\; \; c_{1n+1}=p(x), \;\; c_{ij}=a_{i-1}^{j-1} \; \text{for}\; i>1, j\leq n,\;\; c_{in+1}=b_{i-1}\; \text{for}\; i>1. The polynomial p(x)p(x) is defined by the equation detA=0\det A=0. Let ff be a polynomial and replace (bi)(b_{i}) with (f(bi))(f(b_{i})). Then detA=0\det A=0 defines another polynomial q(x)q(x). Prove that f(p(x))q(x)f(p(x))-q(x) is a multiple of i=1n(xai).\prod_{i=1}^{n} (x-a_{i}).