Source: Brazilian Mathematical Olympiad 2024, Level U, Problem 6
October 12, 2024
limitreal analysisFareynumber theory
Problem Statement
For each positive integer n, list in increasing order all irreducible fractions in the interval [0,1] that have a positive denominator less than or equal to n:0=q0p0<n1=q1p1<⋯<11=qM(n)pM(n).Let k be a positive integer. We define, for each n such that M(n)≥k−1,fk(n)=min{s=0∑k−1qj+s:0≤j≤M(n)−k+1}.Determine, in function of k,n→∞limnfk(n).For example, if n=4, the enumeration is 10<41<31<21<32<43<11,where p0=0,p1=1,p2=1,p3=1,p4=2,p5=3,p6=1 and q0=1,q1=4,q2=3,q3=2,q4=3,q5=4,q6=1. In this case, we have f1(4)=1,f2(4)=5,f3(4)=8,f4(4)=10,f5(4)=13,f6(4)=17, and f7(4)=18.