MathDB

2024 Brazil Undergrad MO

Part of Brazil Undergrad MO

Subcontests

(6)
6
1

limit sum of Farey sequence

For each positive integer n n , list in increasing order all irreducible fractions in the interval [0,1][0, 1] that have a positive denominator less than or equal to n n :
0=p0q0<1n=p1q1<<11=pM(n)qM(n). 0 = \frac{p_0}{q_0} < \frac{1}{n} = \frac{p_1}{q_1} < \cdots < \frac{1}{1} = \frac{p_{M(n)}}{q_{M(n)}}.
Let k k be a positive integer. We define, for each n n such that M(n)k1 M(n) \geq k - 1 ,
fk(n)=min{s=0k1qj+s:0jM(n)k+1}. f_k(n) = \min \left\{ \sum_{s=0}^{k-1} q_{j+s} : 0 \leq j \leq M(n) - k + 1 \right\}.
Determine, in function of k k ,
limnfk(n)n. \lim_{n \to \infty} \frac{f_k(n)}{n}.
For example, if n=4 n = 4 , the enumeration is
01<14<13<12<23<34<11, \frac{0}{1} < \frac{1}{4} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \frac{1}{1},
where p0=0,p1=1,p2=1,p3=1,p4=2,p5=3,p6=1 p_0 = 0, p_1 = 1, p_2 = 1, p_3 = 1, p_4 = 2, p_5 = 3, p_6 = 1 and q0=1,q1=4,q2=3,q3=2,q4=3,q5=4,q6=1 q_0 = 1, q_1 = 4, q_2 = 3, q_3 = 2, q_4 = 3, q_5 = 4, q_6 = 1 . In this case, we have f1(4)=1,f2(4)=5,f3(4)=8,f4(4)=10,f5(4)=13,f6(4)=17 f_1(4) = 1, f_2(4) = 5, f_3(4) = 8, f_4(4) = 10, f_5(4) = 13, f_6(4) = 17 , and f7(4)=18 f_7(4) = 18 .