MathDB
ab+bc+ca = 1

Source: IMO ShortList 2004, algebra problem 5

March 22, 2005
inequalitiesIMO ShortlistHi

Problem Statement

If aa, bb ,cc are three positive real numbers such that ab+bc+ca=1ab+bc+ca = 1, prove that 1a+6b3+1b+6c3+1c+6a31abc. \sqrt[3]{ \frac{1}{a} + 6b} + \sqrt[3]{\frac{1}{b} + 6c} + \sqrt[3]{\frac{1}{c} + 6a } \leq \frac{1}{abc}.