MathDB
function decomposition

Source: miklos schweitzer 1997 q7

September 24, 2021
group theoryEuclidean spacefunction

Problem Statement

Let G be an abelian group, 0ε<10\leq\varepsilon<1 and f:GRnf : G\to\Bbb R^n a function that satisfies the inequality. f(x+y)f(x)f(y)εf(y)(x,y)G2||f(x+y)-f(x)-f(y)|| \leq \varepsilon ||f (y)|| \qquad (x, y)\in G^2 Prove that there is an additive function A:GRnA : G\to \Bbb R^n and a continuous function φ:A(G)Rn\varphi : A (G) \to\Bbb R^n such that f=φAf = \varphi\circ A.