MathDB
AMxCM + BMxDM >= \sqrt{ABxBCxCDxDA} if <AMB =<ADM+<BCM ...

Source: Ukrainian Geometry Olympiad 2020, XI p5

April 27, 2020
geometryanglesgeometric inequality

Problem Statement

Inside the convex quadrilateral ABCDABCD there is a point MM such that AMB=ADM+BCM\angle AMB = \angle ADM + \angle BCM and AMD=ABM+DCM\angle AMD = \angle ABM + \angle DCM. Prove that AMCM+BMDMABBCCDDAAM \cdot CM + BM \cdot DM \ge \sqrt{AB \cdot BC\cdot CD \cdot DA}