MathDB
Problems
Contests
National and Regional Contests
China Contests
China National Olympiad
2007 China National Olympiad
1
China Mathematics Olympiads (National Round) 2007 Problem 1
China Mathematics Olympiads (National Round) 2007 Problem 1
Source:
November 28, 2010
complex numbers
inequalities proposed
inequalities
Problem Statement
Given complex numbers
a
,
b
,
c
a, b, c
a
,
b
,
c
, let
∣
a
+
b
∣
=
m
,
∣
a
−
b
∣
=
n
|a+b|=m, |a-b|=n
∣
a
+
b
∣
=
m
,
∣
a
−
b
∣
=
n
. If
m
n
≠
0
mn \neq 0
mn
=
0
, Show that
max
{
∣
a
c
+
b
∣
,
∣
a
+
b
c
∣
}
≥
m
n
m
2
+
n
2
\max \{|ac+b|,|a+bc|\} \geq \frac{mn}{\sqrt{m^2+n^2}}
max
{
∣
a
c
+
b
∣
,
∣
a
+
b
c
∣
}
≥
m
2
+
n
2
mn
Back to Problems
View on AoPS