MathDB
Problems
Contests
National and Regional Contests
China Contests
China National Olympiad
2007 China National Olympiad
2007 China National Olympiad
Part of
China National Olympiad
Subcontests
(3)
3
2
Hide problems
China Mathematics Olympiads (National Round) 2007 Problem 6
Find a number
n
≥
9
n \geq 9
n
≥
9
such that for any
n
n
n
numbers, not necessarily distinct,
a
1
,
a
2
,
…
,
a
n
a_1,a_2, \ldots , a_n
a
1
,
a
2
,
…
,
a
n
, there exists 9 numbers
a
i
1
,
a
i
2
,
…
,
a
i
9
,
(
1
≤
i
1
<
i
2
<
…
<
i
9
≤
n
)
a_{i_1}, a_{i_2}, \ldots , a_{i_9}, (1 \leq i_1 < i_2 < \ldots < i_9 \leq n)
a
i
1
,
a
i
2
,
…
,
a
i
9
,
(
1
≤
i
1
<
i
2
<
…
<
i
9
≤
n
)
and
b
i
∈
4
,
7
,
i
=
1
,
2
,
…
,
9
b_i \in {4,7}, i =1, 2, \ldots , 9
b
i
∈
4
,
7
,
i
=
1
,
2
,
…
,
9
such that
b
1
a
i
1
+
b
2
a
i
2
+
…
+
b
9
a
i
9
b_1a_{i_1} + b_2a_{i_2} + \ldots + b_9a_{i_9}
b
1
a
i
1
+
b
2
a
i
2
+
…
+
b
9
a
i
9
is a multiple of 9.
China Mathematics Olympiads (National Round) 2007 Problem 3
Let
a
1
,
a
2
,
…
,
a
11
a_1, a_2, \ldots , a_{11}
a
1
,
a
2
,
…
,
a
11
be 11 pairwise distinct positive integer with sum less than 2007. Let S be the sequence of
1
,
2
,
…
,
2007
1,2, \ldots ,2007
1
,
2
,
…
,
2007
. Define an operation to be 22 consecutive applications of the following steps on the sequence
S
S
S
: on
i
i
i
-th step, choose a number from the sequense
S
S
S
at random, say
x
x
x
. If
1
≤
i
≤
11
1 \leq i \leq 11
1
≤
i
≤
11
, replace
x
x
x
with
x
+
a
i
x+a_i
x
+
a
i
; if
12
≤
i
≤
22
12 \leq i \leq 22
12
≤
i
≤
22
, replace
x
x
x
with
x
−
a
i
−
11
x-a_{i-11}
x
−
a
i
−
11
. If the result of operation on the sequence
S
S
S
is an odd permutation of
{
1
,
2
,
…
,
2007
}
\{1, 2, \ldots , 2007\}
{
1
,
2
,
…
,
2007
}
, it is an odd operation; if the result of operation on the sequence
S
S
S
is an even permutation of
{
1
,
2
,
…
,
2007
}
\{1, 2, \ldots , 2007\}
{
1
,
2
,
…
,
2007
}
, it is an even operation. Which is larger, the number of odd operation or the number of even permutation? And by how many?Here
{
x
1
,
x
2
,
…
,
x
2007
}
\{x_1, x_2, \ldots , x_{2007}\}
{
x
1
,
x
2
,
…
,
x
2007
}
is an even permutation of
{
1
,
2
,
…
,
2007
}
\{1, 2, \ldots ,2007\}
{
1
,
2
,
…
,
2007
}
if the product
∏
i
>
j
(
x
i
−
x
j
)
\prod_{i > j} (x_i - x_j)
∏
i
>
j
(
x
i
−
x
j
)
is positive, and an odd one otherwise.
2
2
Hide problems
China Mathematics Olympiads (National Round) 2007 Problem 2
Show that: 1) If
2
n
−
1
2n-1
2
n
−
1
is a prime number, then for any
n
n
n
pairwise distinct positive integers
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \ldots , a_n
a
1
,
a
2
,
…
,
a
n
, there exists
i
,
j
∈
{
1
,
2
,
…
,
n
}
i, j \in \{1, 2, \ldots , n\}
i
,
j
∈
{
1
,
2
,
…
,
n
}
such that
a
i
+
a
j
(
a
i
,
a
j
)
≥
2
n
−
1
\frac{a_i+a_j}{(a_i,a_j)} \geq 2n-1
(
a
i
,
a
j
)
a
i
+
a
j
≥
2
n
−
1
2) If
2
n
−
1
2n-1
2
n
−
1
is a composite number, then there exists
n
n
n
pairwise distinct positive integers
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \ldots , a_n
a
1
,
a
2
,
…
,
a
n
, such that for any
i
,
j
∈
{
1
,
2
,
…
,
n
}
i, j \in \{1, 2, \ldots , n\}
i
,
j
∈
{
1
,
2
,
…
,
n
}
we have
a
i
+
a
j
(
a
i
,
a
j
)
<
2
n
−
1
\frac{a_i+a_j}{(a_i,a_j)} < 2n-1
(
a
i
,
a
j
)
a
i
+
a
j
<
2
n
−
1
Here
(
x
,
y
)
(x,y)
(
x
,
y
)
denotes the greatest common divisor of
x
,
y
x,y
x
,
y
.
China Mathematics Olympiads (National Round) 2007 Problem 5
Let
{
a
n
}
n
≥
1
\{a_n\}_{n \geq 1}
{
a
n
}
n
≥
1
be a bounded sequence satisfying a_n < \displaystyle\sum_{k=a}^{2n+2006} \frac{a_k}{k+1} + \frac{1}{2n+2007} \forall n = 1, 2, 3, \ldots Show that a_n < \frac{1}{n} \forall n = 1, 2, 3, \ldots
1
2
Hide problems
China Mathematics Olympiads (National Round) 2007 Problem 1
Given complex numbers
a
,
b
,
c
a, b, c
a
,
b
,
c
, let
∣
a
+
b
∣
=
m
,
∣
a
−
b
∣
=
n
|a+b|=m, |a-b|=n
∣
a
+
b
∣
=
m
,
∣
a
−
b
∣
=
n
. If
m
n
≠
0
mn \neq 0
mn
=
0
, Show that
max
{
∣
a
c
+
b
∣
,
∣
a
+
b
c
∣
}
≥
m
n
m
2
+
n
2
\max \{|ac+b|,|a+bc|\} \geq \frac{mn}{\sqrt{m^2+n^2}}
max
{
∣
a
c
+
b
∣
,
∣
a
+
b
c
∣
}
≥
m
2
+
n
2
mn
China Mathematics Olympiads (National Round) 2007 Problem 4
Let
O
,
I
O, I
O
,
I
be the circumcenter and incenter of triangle
A
B
C
ABC
A
BC
. The incircle of
△
A
B
C
\triangle ABC
△
A
BC
touches
B
C
,
C
A
,
A
B
BC, CA, AB
BC
,
C
A
,
A
B
at points
D
,
E
,
F
D, E, F
D
,
E
,
F
repsectively.
F
D
FD
F
D
meets
C
A
CA
C
A
at
P
P
P
,
E
D
ED
E
D
meets
A
B
AB
A
B
at
Q
Q
Q
.
M
M
M
and
N
N
N
are midpoints of
P
E
PE
PE
and
Q
F
QF
QF
respectively. Show that
O
I
⊥
M
N
OI \perp MN
O
I
⊥
MN
.