equilateral inside a circle
Source: Dutch NMO 2007 (round 2) p1
August 28, 2019
geometrycircleradiusEquilateralEquilateral Triangle
Problem Statement
Consider the equilateral triangle with .
On the extension of side , we define points (on the same side as B) and (on the same side as C) such that . Similarly, we define and on the extension of side such that , and and on the extension of side such that . Now the circumcentre of 4ABC is also the centre of the circle that passes through the points and .
Calculate the radius of the circle through and .[asy]
unitsize(1.5 cm);pair[] A, B, C;A[0] = (0,0);
B[0] = (1,0);
C[0] = dir(60);
A[1] = B[0] + dir(-60);
A[2] = C[0] + dir(120);
B[1] = C[0] + dir(60);
B[2] = A[0] + dir(240);
C[1] = A[0] + (-1,0);
C[2] = B[0] + (1,0);draw(A[1]--A[2]);
draw(B[1]--B[2]);
draw(C[1]--C[2]);
draw(circumcircle(A[2],B[1],C[2]));dot("", A[0], SE);
dot("", A[1], SE);
dot("", A[2], NW);
dot("", B[0], SW);
dot("", B[1], NE);
dot("", B[2], SW);
dot("", C[0], N);
dot("", C[1], W);
dot("", C[2], E);
[/asy]