MathDB

2007 Dutch Mathematical Olympiad

Part of Dutch Mathematical Olympiad

Subcontests

(5)
1
1

equilateral inside a circle

Consider the equilateral triangle ABCABC with BC=CA=AB=1|BC| = |CA| = |AB| = 1. On the extension of side BCBC, we define points A1A_1 (on the same side as B) and A2A_2 (on the same side as C) such that A1B=BC=CA2=1|A_1B| = |BC| = |CA_2| = 1. Similarly, we define B1B_1 and B2B_2 on the extension of side CACA such that B1C=CA=AB2=1|B_1C| = |CA| =|AB_2| = 1, and C1C_1 and C2C_2 on the extension of side ABAB such that C1A=AB=BC2=1|C_1A| = |AB| = |BC_2| = 1. Now the circumcentre of 4ABC is also the centre of the circle that passes through the points A1,B2,C1,A2,B1A_1,B_2,C_1,A_2,B_1 and C2C_2. Calculate the radius of the circle through A1,B2,C1,A2,B1A_1,B_2,C_1,A_2,B_1 and C2C_2.
[asy] unitsize(1.5 cm);
pair[] A, B, C;
A[0] = (0,0); B[0] = (1,0); C[0] = dir(60); A[1] = B[0] + dir(-60); A[2] = C[0] + dir(120); B[1] = C[0] + dir(60); B[2] = A[0] + dir(240); C[1] = A[0] + (-1,0); C[2] = B[0] + (1,0);
draw(A[1]--A[2]); draw(B[1]--B[2]); draw(C[1]--C[2]); draw(circumcircle(A[2],B[1],C[2]));
dot("AA", A[0], SE); dot("A1A_1", A[1], SE); dot("A2A_2", A[2], NW); dot("BB", B[0], SW); dot("B1B_1", B[1], NE); dot("B2B_2", B[2], SW); dot("CC", C[0], N); dot("C1C_1", C[1], W); dot("C2C_2", C[2], E); [/asy]