area of hexagon independent of the position of P inside the triangle
Source: Dutch NMO 2007 (round 2) p5
August 28, 2019
geometryareahexagonmidpointsareas
Problem Statement
A triangle and a point inside this triangle are given.
Define and as the midpoints of and , respectively. Furthermore, let be the intersection of and the intersection of and , and the intersection of and .
Prove that the area of hexagon is independent of the position of inside the triangle.[asy]
unitsize(1 cm);pair A, B, C, D, E, F, P, R, S, T;A = (0,0);
B = (5,0);
C = (1.5,4);
P = (2,2);
D = (A + P)/2;
E = (B + P)/2;
F = (C + P)/2;
R = extension(A,E,B,D);
S = extension(B,F,C,E);
T = extension(C,D,A,F);draw(A--B--C--cycle);
draw(A--P);
draw(B--P);
draw(C--P);
draw(A--F--B);
draw(B--D--C);
draw(C--E--A);dot("", A, SW);
dot("", B, SE);
dot("", C, N);
dot("", D, dir(270));
dot("", E, dir(270));
dot("", F, W);
dot("", P, dir(270));
dot("", R, dir(270));
dot("", S, SW);
dot("", T, SE);
[/asy]