MathDB
area of hexagon independent of the position of P inside the triangle

Source: Dutch NMO 2007 (round 2) p5

August 28, 2019
geometryareahexagonmidpointsareas

Problem Statement

A triangle ABCABC and a point PP inside this triangle are given. Define D,ED, E and FF as the midpoints of AP,BPAP, BP and CPCP, respectively. Furthermore, let RR be the intersection of AEAE and BD,SBD, S the intersection of BFBF and CECE, and TT the intersection of CDCD and AFAF. Prove that the area of hexagon DRESFTDRESFT is independent of the position of PP inside the triangle.
[asy] unitsize(1 cm);
pair A, B, C, D, E, F, P, R, S, T;
A = (0,0); B = (5,0); C = (1.5,4); P = (2,2); D = (A + P)/2; E = (B + P)/2; F = (C + P)/2; R = extension(A,E,B,D); S = extension(B,F,C,E); T = extension(C,D,A,F);
draw(A--B--C--cycle); draw(A--P); draw(B--P); draw(C--P); draw(A--F--B); draw(B--D--C); draw(C--E--A);
dot("AA", A, SW); dot("BB", B, SE); dot("CC", C, N); dot("DD", D, dir(270)); dot("EE", E, dir(270)); dot("FF", F, W); dot("PP", P, dir(270)); dot("RR", R, dir(270)); dot("SS", S, SW); dot("TT", T, SE); [/asy]