MathDB
easy function on Tst

Source: Iranian RMM TST 2021 Day1 P2

April 16, 2021
functionalgebra

Problem Statement

Let f:R+Rf : \mathbb{R}^+\to\mathbb{R} satisfying f(x)=f(x+2)+2f(x2+2x)f(x)=f(x+2)+2f(x^2+2x). Prove that if for all x>14002021x>1400^{2021}, xf(x)2021xf(x) \le 2021, then xf(x)2021xf(x) \le 2021 for all xR+x \in \mathbb {R}^+
Proposed by Navid Safaei