MathDB
sum of nine consecutive quotients of a_{n}= 1111...111 is a multiple of 9

Source: Greece JBMO TST 2014 p3

April 29, 2019
number theoryconsecutiveSummultiple

Problem Statement

Give are the integers a1=11,a2=1111,a3=111111,...,an=1111...111a_{1}=11 , a_{2}=1111, a_{3}=111111, ... , a_{n}= 1111...111( with 2n2n digits) with n>8n > 8 . Let qi=ai11,i=1,2,3,...,nq_{i}= \frac{a_{i}}{11} , i= 1,2,3, ... , n the remainder of the division of aia_{i} by11 11 . Prove that the sum of nine consecutive quotients: si=qi+qi+1+qi+2+...+qi+8s_{i}=q_{i}+q_{i+1}+q_{i+2}+ ... +q_{i+8} is a multiple of 99 for any i=1,2,3,...,(n8)i= 1,2,3, ... , (n-8)